
Visualizing Player Engagement with Virtual Spaces using GIS

Frederick Chan
fredchan@uw.edu

University of Washington

1 April 2020

1 Abstract

GIS software is meant for Earth data, but I demonstrate
here that you can convert video game data and put it
in GIS software anyway. This is used to reveal player
trends and clean up virtual player-generated litter. I
focus on getting heightmaps, locations of gameplay ob-
jects, and metadata of Minecraft maps, converting it
to formats usable by QGIS, and interpreting what that
data could mean so you get why this is practical.

2 Background

The Earth is round. You know this1, I know this, and
so do the developers of geographic information systems
(GIS) software. GIS software is optimized for this fact,
since its main job is to manipulate and analyze Earth
data. Although it can be used for other planets and
moons as well[4], these are all round-ish objects like
Earth is. This is unlike most virtual spaces in video
games, which are flat, but we can try putting those
spaces in GIS software anyway.

It’s helpful for game designers to understand where
players go in these virtual spaces, called maps, to find
out what map features attract players. This can even
be used to weed out pesky camping spots, where players
sit around and pick off unsuspecting passersby, which
is annoying and unfair.[6] By looking at these maps in
GIS and visualizing where people go, map design can be
improved to promote a fair and more fun game environ-
ment. In this paper, I demonstrate the practicality of
importing data sources from video games into GIS and
provide examples of what insights this can lead to2.

In particular, I’ll be extracting data from two dif-
ferent maps, EvanTest and Ships and Stuff, played in
Minecraft, a sandbox game where players collect virtual

1Unless, of course, you’re a flat Earther.
2This is all one big excuse to show you what I’ve built in

Minecraft with my friends.

blocks and use them to build in-game structures on the
procedurally generated map. Using Minecraft with GIS
is not unheard of, as GIS data has been imported into
Minecraft for encouraging citizen participation in urban
planning.[7] While that focuses on using real data in a
video game to solve real problems, I aim to use video
game data in software for real data to solve video game
problems. It’s obviously a very important cause.

Luckily, it’s easy to import arbitrary data sources
into Quantum GIS (QGIS) and not specify a map pro-
jection or coordinate reference system (CRS) that ties
it to a real planet. The game’s world is theoretically in-
finite, but is divided into regions of 32x32 chunks, each
containing 16x16 blocks. Each region file stores chunk
data in a well documented NBT format,[1] so it’s easy
to convert game data into data QGIS will understand.
Each chunk stores its own heightmap, analogous to a dig-
ital surface model (DSM), representing the game world’s
surface and all the structures on it. Chunks also store
the amount of time a chunk is loaded (“InhabitedTime”
which is how long a player was in its vicinity recorded
in ticks (0.05 seconds). By plotting these data on top of
each other, we can see some interesting trends.

We can also plot the locations of undesired objects
(“litter”) in a map, such as repeating command blocks,
which can cause an unpleasant, laggy gameplay experi-
ence when in excess. Plotting them on the heightmap
shows how players are altering the virtual terrain and
creates a useful geographical reference for systematically
cleaning up litter.

3 Converting game data

All the code is available at https://github.com/fechan/
MCGS and written in Python. To extract the heightmaps,
extract_heightmaps.py opens up a region file and looks
at every chunk. Each chunk stores various heightmaps,
but OCEAN_FLOOR is the one we’re interested in, which
stores the highest solid, non-air block. Each heightmap

is a 64-bit array of longs, with every 9 bits being one
elevation value between 0-256 (the height limit of the
game). Knowing this, we can convert the heightmap
into a Python list containing the elevations as integers
with the following function3.

def unstream (v a l u e b i t s , word s ize , data) :
b l = 0
v = 0
decoded = []
for i in range (len (data)) :

for n in range (word s i z e) :
b i t = (data [i] >> n) & 0x01
v = (b i t << bl) | v
bl += 1
i f bl >= v a l u e b i t s :

decoded . append (v)
v = 0
bl = 0

return decoded

With the elevation data in a list, we can convert it
into a geographic raster for QGIS. Since our heightmap
represents a fictional, flat world, there’s no real-world
map projection or CRS that would be appropriate to ap-
ply, so we want to create a raster in a format that doesn’t
require one. The ESRI ASCII grid[2] is one of these, and
has the added benefit of being extremely simple. We just
define the (x,y) of the raster’s lower-left corner to be the
(x,z) of the Minecraft chunk and set the number of rows
and columns to 16. Then we join the elements of our
list of elevations using spaces and put it in the last line
of the file4. Since there are 32 × 32 chunks in a region
(that’s a lot!), we can stitch each chunk raster into one
big region raster with gdal_merge[3].

A similar thing is done by plot_inhabitedtime.py

to get a plot of each chunk’s InhabitedTime. This is just
an integer, so we can just yoink the values into a list, set
the raster to a size of 32 × 32 cells at 16 units (blocks)
per cell, and join the array into the raster file. Then we
have a plot of each chunk’s InhabitedTime for the entire
region.

Both of these rasters can be loaded into QGIS, and
rasters of the same region will be automatically super-
imposed.

In order to plot the locations of specific blocks, a dif-
ferent approach is used since locations of blocks is bet-
ter represented by a vector layer of points. For this, we
can use PyQGIS, QGIS’s Python API, to generate one.

3This is a Python rewrite of a Perl subroutine written by u/Ex-
traStrengthFukitol on Reddit.

4Y is elevation in Minecraft, but Z is elevation in QGIS. One
caveat is that -Z in Minecraft is north while +Y is north in QGIS.
When exporting the heightmap, you can mirror it vertically so that
north is up and QGIS’s Y matches up with Minecraft’s Z.

In ore_plot_qgis.py, I use the anvil-parser Python li-
brary to determine the location of a particular block
given its coordinate. With this, I can scan every block
in the region for the blocks I want to plot. Once the
Python script is loaded into QGIS, I can run it and it
will add a new layer with the plot. The block’s precise
location, including elevation, is stored in the attribute
table.

4 Case study: Multiplayer survival

4.1 Background

EvanTest is a map generated and played on a multi-
player survival server that had 17 unique players in its
playthrough. In survival, hostile mobs spawn that at-
tack nearby players, who need food and shelter to sur-
vive. Players often take on goals such as defeating the
powerful Ender Dragon, an end-game boss. To defeat
it, players get resources to craft more powerful weapons
and armor. Items can be made more powerful by en-
chanting them, sacrificing XP gained by killing mobs.
In this playthrough, the players tended to divide them-
selves into two neighboring communities: Shack Village
and Brazil. In Figure 1, the cluster of buildings on the
left is Brazil and the cluster on the right is Shack Village.

4.2 Results

I successfully exported four regions’ heightmaps and their
InhabitedTime maps from Minecraft into QGIS, which
is shown in Figures 1 and 2. Analyzing the statistics of
the InhabitedTime raster of the main region of Evan-
Test where players inhabited indicates that chunks in
the region were loaded for anywhere between 3,378 to
13,734,633) ticks (≈3 minutes to 191 hours), with a mean
of 1,887,419 ticks (≈26 hours) and standard deviation
of 3,366,901 ticks (≈47 hours). Complete maps of the
whole area are in Appendix A: EvanTest Maps.

4.3 Discussion

To get food, players need access to farms. To craft items,
they need access to mines, crafting tables, furnaces. Spe-
cial resources required to craft certain items are also only
available by traversing through Nether portals, special
structures that players build. It is therefore unsurpris-
ing that people tend to hang around the metropolitan
area (Figure 1), where all of these are available within
a short distance. It’s important to note that a chunk’s
InhabitedTime is only a measure of whether a chunk
is loaded (within viewing distance of a player) and not
whether a player was actually inside the chunk at the

Figure 1: Pseudocolor map of the heightmap of the
Shack Village-Brazil Metropolitan Area, with Inhabited-
Time map on top, and labels indicating the type of build-
ing underneath. House icons are player houses, vases are
storage areas, cars are storage areas for horses, pizzas
are food farms, caves are mines, fires are Nether por-
tals, books are enchanting-related buildings, and dots
are miscellaneous. Permanent transportation infrastruc-
ture, like minecart rails, are indicated with dotted lines.

Figure 2: Map of the Mob spawner and AFK fishing
hole. The dotted line is connected with the dotted line
going up Figure 1 by extra rail in between. (See Ap-
pendix A for more detail).

time. When a player is in a chunk, that player con-
tributes to the InhabitedTime of all the chunks within
their vision in a circle. As such, there are chunks in the
metropolitan area with the highest InhabitedTime that
have paradoxically few buildings. This is probably be-
cause it’s the intersection of circles (imagine the middle
of a Venn Diagram) around the urban cores of Shack
Village and Brazil respectively, and not because people
spend a lot of time hanging around the Colosseum be-
tween them, which is decorative and serves no gameplay
purpose.

The second hot zone, completely separate from the
metropolitan area, is the Mob spawner and AFK fishing
area. Being one of only two available enchanting build-
ings, it is important for being the only convenient and
readily available source of XP required for enchanting.
This is due to the mob spawner block within, gener-
ated upon map creation, that cannot be moved. Play-
ers sit around the mob spawner and kill mobs for XP.
Inside the building are other facilities dedicated to en-
chanting, such as the enchanting table and AFK fishing
area. The AFK fishing area in particular is a tremendous
contributor to the surrounding InhabitedTime; it allows
players to fish while being away from their keyboard
(AFK). Players would leave themselves logged in and
fishing there overnight hoping for enchantments avail-
able only though fishing or trading with non-player Vil-
lagers. Contrast this with the Villager Tenements and
Trading Grounds in the bottom right of the metropoli-
tan area, which was established much later and relies
on trading rather than fishing to acquire these enchant-
ments. Trading requires significantly less time commit-
ment, and therefore has comparatively low Inhabited-
Time around it.

This information can be used to inform and evaluate
the placement of transport infrastructure. For example,
the transport rail in the top of Figure 1 and in Figure 2 is
effective since it connects the middle of the metropolitan
area and the mob spawner. Meanwhile, the ice-boat
bridge on the bottom of Figure 1 may not be so useful,
connecting the urban center to a building without much
function. Players making new buildings could, however,
be encouraged to build near it and give it more purpose.

5 Case study: Multiplayer creative

5.1 Background

Ships and Stuff is a map generated and continuously
played on for over 5 years. Unlike EvanTest, this world
is a creative mode map, meaning that players are in-
vincible and are given unlimited blocks to build with.
The only goal is to channel your creativity (hence cre-

ative mode) and build to your heart’s content. On this
map, players mostly built starships from the popular sci-
fi franchise Star Trek (hence “Ships”) as well as other
miscellany (hence “and Stuff”). Over the years, there
has been a gradual build-up of litter by players. Re-
peating command blocks, which issue commands that
check and modify the game state every tick that they’re
loaded, run simultaneously and create lag when there
are a lot of them. One trend that surfaced while play-
ing on this map was creating traps out of these blocks,
which checked for nearby players and annoyed the liv-
ing daylights out of them. In order to be effective as
traps, they were hidden from view. Years later, when
people realized they were causing lag, they were horren-
dously hard to find because they were buried in places
nobody could see. The extent to which this player trend
has changed the landscape was unknown, but with the
power of GIS, we can find all these pesky blocks and put
and end to them once and for all.

5.2 Results

Scanning the four main regions of the map turned up
an impressive 295 repeating command blocks littered
around the world. See Appendix B, Figure 5 for a plot
of all the litter that showed up.

Figure 3: 27 repeating command blocks in this guy’s
house alone! Naughty, naughty!

5.3 Discussion

Years and years of litter accumulation occurred on the
map, despite surface-level cleanups. Hundreds of com-
mand blocks were just sitting around constantly doing
things, creating lag for players for years. Knowing the
precise locations of all the litter in the area certainly
makes it much easier to clean up, which hopefully re-
duces the lag significantly. If you use GRASS GIS’s
v.net.salesman[5], you can try to make an optimal
route visiting all the repeating command blocks in the
world to get rid of them. I dub this the “Traveling
Minecraft player problem.”

Repeating command blocks aren’t the only thing you
can scan the world for, either. You can scan the world
for ores and other resources, if so inclined. Useful for
people who don’t want to spend time looking for ore. For
diamond ore especially, you can skip scanning a ton of
blocks by taking advantage of the fact that they spawn
at elevations below 16 and in veins that appear only
once per chunk. This would save a considerable amount
of processing time.

6 Conclusion and future work

All in all, extracting data from Minecraft and into QGIS
is a relatively simple and practical procedure. I lever-
aged existing libraries and bridged the gap between video
games and software meant for modeling the real world.
It can reveal interesting patterns in where players go and
what players do, and aids in creating actionable plans
for increasing building visibility and use. It can show
how years of play on a map creates litter and can be a
tool in cleaning it up at the same time. Plus, it just
makes some pretty cool looking maps. I mean, just look
at them.

What can be done with GIS software isn’t limited to
what can be seen here. All the compatible tools that GIS
provides is at your disposal. The methods outlined here
can also be generalized for other video games. If you
can extract the layout of the map, it can be a basemap
that provides geographical context for the other data
you want to plot.

7 Acknowledgments

A word of thanks to Brian, Evan Grilley (Embry Riddle
Aeronautical University), James Akina (Central Wash-
ington University), Jack Doughty, Logan Lemieux (West-
ern Washington University), Oliver Low (Georgia In-
stitute of Technology), Tom Connolly (Carnegie Mel-
lon University), and others for playing and building up

EvanTest. A word of thanks also goes out to Cole El-
lis (Oregon State University), James Gale (University
of Washington), and Oliver Low (again), and others for
playing and building up Ships and Stuff. James Gale
also requested that I note that he “made all the good
ships.”

References

[1] Chunk format — Minecraft wiki. https:

//minecraft.gamepedia.com/index.php?title=

Chunk_format&oldid=1497793. [Online; accessed
14-February-2020].

[2] Esri Grid format — ArcGIS resource center.
http://help.arcgis.com/en/arcgisdesktop/

10.0/help/index.html#//009t0000000w000000.
[Online; accessed 14-February-2020].

[3] gdal merge — GDAL documentation. https://

gdal.org/programs/gdal_merge.html. [Online;
accessed 14-February-2020].

[4] USGS astrogeology mapping, remote-sensing,
cartography, technology, and research (MRCTR)
gis lab. "https://www.usgs.gov/centers/

astrogeology-science-center/science/

mrctr-gis-lab". [Online; accessed 14-February-
2020].

[5] v.net.salesman — GRASS GIS 7.6.2dev refer-
ence manual. https://grass.osgeo.org/grass76/
manuals/v.net.salesman.html. [Online; accessed
18-February-2020].

[6] Simon Egenfeldt-Nielsen, Jonas Heide Smith, and
Susana Pajares Tosca. Understanding Video Games:
The Essential Introduction. Routledge, 2 edition,
2012.

[7] Fanny von Heland, Pontus Westerberg, and Marcus
Nyberg. Using Minecraft as a citizen participation
tool in urban design and decision making. Future of
Places, Stockholm, 2015.

A EvanTest Maps

Figure 4: A part of EvanTest’s main region’s heightmap with a pseudocolor gradient (cpt-city wiki-2.0) applied.

Figure 5: Above map with InhabitedTime map superimposed. The redder, the more inhabited. Labels are also added
showing the purpose of buildings below. House icons are player houses, vases are storage areas, cars are storage areas
for horses, pizzas are food farms, caves are mines, fires are Nether portals, books are enchanting-related buildings, and
dots are miscellaneous. Permanent transportation, like minecart rails, are indicated with dotted lines.

B Ships and Stuff Map

Figure 6: Heightmap of Ships and Stuff with locations of repeating command blocks plotted on top as red dots.

